Implicit Differentiation and the Chain Rule
The chain rule tells us that:
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While implicitly differentiating an expression like z + y? we use the chain rule

as follows: p A2 d
() = T2 =y
dx dy dx

Why can we treat y as a function of z in this way?

Figure 1: The hyperbola 3% — 22 = 1.

Consider the equation y? — 2% = 1, which describes the hyperbola shown in
Figure 1. We cannot write y as a function of z, but if we start with a point
(z,y) on the graph and then change its « coordinate by sliding the point along
the graph its y coordinate will be constrained to change as well. The change in
y is implied by the change in x and the constraint y? — 22 = 1. Thus, it makes

d
sense to think about 3’ = d—y, the rate of change of y with respect to x.
x

Given that y? — 22 = 1:
a) Use implicit differentiation to find y’.

b) Check your work by using Figure 1 to estimate the slope of the tangent line
to the hyperbola when y = —1 and when z = 1.

¢) Check your work for y > 0 by solving for y and using the direct method to
take the derivative.
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